Thermal Testing & Correlation in the Frequency Domain

Alexander van Oostrum, ATG Engineering

ESTEW 2024, Noordwijk

ATG EUROPE | ACCELERATING INNOVATION

ACKNOWLEDGMENTS

This work has been mainly performed by

- Najeeba Murtuzapurwala (TU Delft Student)
- Joris Feijen (ATG Engineering)

With the guidance and senior contribution from

Arturo González-Llana (ATG Engineering)

Special consideration to

- TU Delft for providing a masters student and TVAC facilities
- DHV Technology for sending us an in-house built MLI for the tests

Question: Is frequency domain thermal testing a feasible method to perform or complement *some* thermal tests?

- Introduction, typical test objectives, why frequency domain?
- Proof of concept Testing and practical application on a basic thermal strap
- Application on a more complex model virtual testing
- Ongoing activities unlocking the real benefits, integration in real test setups
- Conclusions

TVAC remains a key milestone in TCS verification of space systems

Three main objectives

- Verification
- Qualification
- Correlation

TVAC OBJECTIVES

Verification

- Vacuum is a key feature of the orbital environment
- No options to reduce time

Qualification

- Loads defined by thermal predictions
- Vacuum environment needed for system safety

Correlation

- Quasi-equilibrium required, balance phases long and limited configurations
- Risk of damaging the system when applying artificially temperature gradients for local correlation

Phase-shift $\Delta \phi$ based correlation

Phase-shift $\Delta \phi$ based correlation

Advantages:

- Absolute temperature measurement accuracy is not important
 - \rightarrow No need for quasi-equilibrium
 - →Small thermal loads suffice for correlation
 - \rightarrow Mostly unsensitive to heat leaks
 - →Impact of local design/model features remains local
 - \rightarrow Potential to correlate in ambient!

Phase-shift $\Delta \phi$ based correlation

Advantages:

- Absolute temperature measurement accuracy is not important
 - \rightarrow No need for quasi-equilibrium
 - →Small thermal loads suffice for correlation
 - \rightarrow Mostly unsensitive to heat leaks
 - →Impact of local design/model features remains local
 - \rightarrow Potential to correlate in ambient!
- Ability to open to use the toolbox of "frequency analysis tools"
 - Frequency decomposition: performing multiple tests at the same time

Phase-shift $\Delta \phi$ based correlation

Disadvantages:

- Limited applicability
- Absolute temperature measurement accuracy is not needed
 Potentially unsensitive to heat leaks
- Environment may no longer be representative
- Accurate knowledge of thermal mass required
- May still require long test periods...

SAMPLE TVAC OSCILLATORY LOAD TEST

Test Parameters				
Oscillation Period	1500 s			
Power Amplitude	3 W			
Chamber Pressure	8.6x10 ⁻³ mbar			
Initial Chamber Temperature	27.7 °C			

SAMPLE TVAC OSCILLATORY LOAD CORRELATION

Phase-shift base correlation

Correlated Model Parameters				
Thermal Contact Conductance [W/m ² K]				
Feature A	1656			
Feature C	2080			
Heat Sink	800			
Strap Conductance Factor				
Feature B	0.475			

TVAC OSCILLATORY LOAD VS BALANCE CORRELATION

Initial Model Parameters				
Thermal Contact Conductance [W/m ² K]				
Feature A	1656			
Feature C	2080			
Heat Sink	800			
Strap Conductance Factor				
Feature B	0.475			
Heat Leaks [W/K]				
Heater plate to TVAC	0.037			

→ Frequency domain thermal correlations remain valid after adding heat leakages in the steady state correlation

TVAC OSCILLATORY LOAD VS BALANCE CORRELATION

- Method works (as expected)
- Similar results between:
 - Ambient (outisde TVAC) <-> Ambient (inside TVAC) <-> TVAC
- Useful correlation data can be extracted from very low amplitude signals

Computational test \rightarrow Oscillatory load at $10^{-4}Hz$

Data generated with model with unknown key features:
 -Random adjustments to typical uncertainty parameters
 -Artificial heat leakages added

Correlation based on a different configuration of the same model
 Only limited set of adjusted parameters considered

Analysis in both time domain and using ESATAN's frequency domain solver

Uncorrelated model

Sensor pairs

Reference model (random variations added)

Difference in phase shifts

Lower input frequency:

- Higher gain → Better measurability of output signal -Measurability can also be improved with increased heater amplitude
- Small phase shift in the frequency domain
- Larger phase shifts in time domain → Better measurability of phase shift

Higher input frequency:

• Faster oscillations \rightarrow shorter test duration

Units: seconds

ATG EUROPE | ACCELERATING INNOVATION

In this model, this reached a correlation in thermal balance of 1°C or below

 Differences in phase shift between data and predictions below 0.5°C

Component	Reference [°C]	Correlated [°C]	Difference [°C]
Sensor pair 1	-53.3	-52.8	-0.5
	-63.0	-62.5	-0.5
	-72.5	-70.8	-1.7
	-58.1	-57.7	-0.4
	-52.9	-52.3	-0.6
	-51.8	-51.2	-0.6
Sensor pair 7	-57.9	-57.4	-0.7

- A "traditional" correlation process can also be applied
- Oscillation periods and amplitudes remain in a realistic range
- Insensitivity to heat leakages still applies

ONGOING ACTIVITIES

- Data filtering and processing noise reduction and frequency decomposition
- Integration methodology into "standard" tests
- Testing at multiple frequencies at the same time

Thermal test correlation achieved based on frequency domain responses

- Without considering heat leaks
- Without the thermal balance data

This methodology seems to work, potential to gain capacity with minimum cost

• Works for both simple and complex models

Next steps:

- Feasibility of integrating methods in real tests
- Performing tests for multiple frequencies at the same time
- Apply on a real project

Questions?

ATG EUROPE | ACCELERATING INNOVATION